
Multimed Tools Appl (2018) 77:1453–1474
DOI 10.1007/s11042-016-4308-z

Dependency- and similarity-aware caching for HTTP
adaptive streaming

Cong Zhang1 · Jiangchuan Liu1,5 ·Fei Chen2 ·
Yong Cui3 ·Edith C.-H. Ngai4 ·Yuemin Hu5

Received: 6 May 2016 / Revised: 24 October 2016 / Accepted: 26 December 2016 /
Published online: 13 January 2017
© Springer Science+Business Media New York 2017

Abstract There has been significant interest in the use of HTTP adaptive streaming for
live or on-demand video over the Internet in recent years. To mitigate the streaming trans-
mission delay and reduce the networking overhead, an effective and critical approach is
to utilize cache services between the origin servers and the heterogeneous clients. As the
underlying protocol for web transactions, HTTP has great potentials to explore the resources
within state-of-the-art CDNs for caching; yet distinct challenges arise in the HTTP adap-
tive streaming context. After examining a long-term and large-scale adaptive streaming

� Jiangchuan Liu
csljc@ieee.org

Cong Zhang
congz@cs.sfu.ca

Fei Chen
chenf@jiangnan.edu.cn

Yong Cui
cuiyong@tsinghua.edu.cn

Edith C.-H. Ngai
edith.ngai@it.uu.se

Yuemin Hu
ymhu@scau.edu.cn

1 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

2 School of Digital Media, Jiangnan University, Wuxi, People’s Republic of China

3 Department of Computer Science, Tsinghua University, Beijing, People’s Republic of China

4 Department of Information Technology, Uppsala University, Uppsala, Sweden

5 College of Natural Resources and Environment, South China Agricultural University,
Guangzhou, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-016-4308-z&domain=pdf
mailto:csljc@ieee.org
mailto:congz@cs.sfu.ca
mailto:chenf@jiangnan.edu.cn
mailto:cuiyong@tsinghua.edu.cn
mailto:edith.ngai@it.uu.se
mailto:ymhu@scau.edu.cn

1454 Multimed Tools Appl (2018) 77:1453–1474

dataset as well as statistical analysis, we demonstrate that the switching requests among
the different qualities frequently emerge and constitute a significant portion in a per-day
view. Consequently, they have substantially affected the performance of cache servers and
Quality-of-Experience (QoE) of viewers. In this paper, we propose a novel cache model
that captures the dependency among the segments in the cache server for adaptive HTTP
streaming. Our work does not assume any specific selection algorithm on the client’s side
and hence can be easily incorporated into existing streaming cache systems. Its central-
ized nature is also well accommodated by the latest DASH specification. Moreover, we
extend our work to the multi-server caching context and present a similarity-aware alloca-
tion mechanism to enhance the caching efficiency. The performance evaluation shows our
dependency- and similarity-aware strategy can significantly improve the cache hit-ratio and
QoE of HTTP streaming as compared to previous approaches.

Keywords Caching strategy · Segment dependency · Request similarity ·
Dynamic adaptive streaming over HTTP

1 Introduction

There has been significant interest in the use of HTTP adaptive streaming for live or on-
demand video over the Internet in recent years. The Dynamic Adaptive Streaming over
HTTP (DASH) has been adopted as an international standard, and the second version was
released in July 2013. It allows a single video content to be encoded into multiple-resolution
versions in advance and simultaneously adapts different types of devices with different
screen sizes, networking conditions, and QoE requirements. There are three impressive nov-
elties continuously making such adaptive HTTP streaming attractive: (1) the adaptability
to dynamic networking fluctuation, (2) the flexibility in penetrating firewalls, and (3) the
compatibility for the existing Internet resources that are generally optimized for web ser-
vices. As such, it has been widely used in the real-world commercial systems. As a notable
example and industrial flagship, Netflix delivers millions of movies, TV-series, and other
shows to over 50 million global subscribers [25]. CBC also adopted HTTP adaptive stream-
ing to broadcast the 2014 FIFA World Cup to millions of viewers during the month-long
tournament in Brazil [3]. According to the recent report from YouTube [33], the second
presidential debate of the United States attracted over 1.5 million peak viewers and over
124 million total views.

To mitigate the streaming transmission delay and reduce the networking overhead, an
effective and critical approach is to utilize cache servers between the origin servers and the
heterogeneous clients. For example, Netflix employs multiple commercial CDNs (Content
Delivery Networks) to deliver video contents to end users. These CDNs, including Akamai,
LimeLight , and Level − 3 [1], cache video segments of multiple versions, making them
closer to millions of clients from various geographical locations. From the perspectives of
service availability and flexibility, caching mechanism can meet the Quality-of-Experience
requirements of massive heterogeneous viewers in the practical large-scale HTTP adaptive
streaming systems. As the underlying protocol for web transactions and adaptive streaming
services, HTTP has great potentials to explore the resources within state-of-the-art CDNs
for caching; yet distinct challenges arise in the HTTP adaptive streaming context.

First, the selection logic in DASH clients substantially impacts the utilization of cached
segments, particularity with heterogeneous devices and the various quality levels [14].
In DASH, clients have to adaptively choose different bit-rate streaming segments to

Multimed Tools Appl (2018) 77:1453–1474 1455

accommodate frequent networking changes. Our measurement result shows that the pro-
portion of switching activities accounts for more than 55 % of a session, and there can be
more than 10 different levels to be chosen for each video segment. Moreover, there exists
strong dependency among the segments. As such, conventional caching strategies for a
single quality level and full object do not work well.

Second, due to the dynamic networks, it is hard to identify user’s downloading capacity
consistently, classify them into appropriate quality group accurately and explore an opti-
mal caching strategy to improve the performance of whole streaming system [12]. As such,
previous works that focus on the traditional streaming system fail in handling current more
dynamic networking condition of heterogeneous devices. Moreover, designed for conven-
tional web objects, these solutions need to be substantially revised to accommodate the
multi-quality nature of HTTP adaptive streaming.

In this paper, we closely examine the caching for HTTP adaptive streaming with strong
segment dependency. Our contributions can be summarized as follows. First, we propose a
novel cache model that captures the dependency among the segments in the cache server.
Second, we extend the solution to the multi-server caching context and present a similarity-
aware allocation approach to precisely capture the inter-relationship among the requests in
HTTP adaptive streaming. Third, our work does not assume any specific selection algo-
rithm on the client’s side and hence can be easily incorporated into existing streaming cache
services (e.g., CDNs). Its centralized nature is also well accommodated by the latest DASH
specification [28]. We have evaluated our solution based on the real-world DASH dataset.
The experimental results show that, comparing with the previous works, the hit-ratio and
QoS of dependency- and similarity-aware cache can be significantly improved.

The rest of the paper is structured as follows. Section 2 introduces the background and
motivation. Section 3 illustrates the formulation and solution of our dependency-aware
cache model in HTTP adaptive streaming system. Section 4 formulates the improved strat-
egy to optimize the caching performance in the multi-server caching context. The results of
caching performance evaluation are offered in Section 5. We briefly review related work in
Section 6 and finally conclude the paper in Section 7.

2 Background and motivation

Due to the rapid growth of social networks (e.g., Facebook) and the widespread deploy-
ment of high-speed communication networks (e.g., LTE), video streaming has become one
of the most popular Internet services and attracted an increasing number of users as the
content providers and consumers. To overcome the growing workloads, the architecture of
video streaming is evolved from typical Client-Server model, Peer-to-Peer (P2P) network to
current Cloud-based HTTP live streaming system [15]. The corresponding streaming pro-
tocols are also adopted from Realtime Transport Protocol (RTP), P2P Streaming Protocol
to Hyper-Text Transport Protocol (HTTP). Particularly, in recent twenty years, there are a
substantial amount of researches that focus on the optimization of streaming systems [5, 24]
and the improvements of Quality-of-Service (QoS) [13, 20, 21] and Quality-of-Experience
(QoE) [18, 34] from service providers’ and video audiences’ perspectives, respectively. Cur-
rently, lots of studies focus on the HTTP-based streaming system due to its widespread
implementation in commercial video services, including Apple HTTP Live Streaming,
Adobe HTTP Dynamic Streaming, and Microsoft Smooth Streaming, to name but a few.
The recent dynamic adaptive HTTP streaming standard, DASH, encodes each video into
continual segments of different alternatives with lower or higher bit-rates and resolutions.

1456 Multimed Tools Appl (2018) 77:1453–1474

Fig. 1 A generic DASH architecture

Figure 1 describes a generic DASH architecture.1 The basic data transfer and information
exchange rely on HTTP protocol, including MPD (Media Presentation Description) file
that is to be parsed by clients. In this example, the streaming content includes three video
levels, which are divided into three segments, respectively. A DASH client first requests and
analyzes MPD file, and then utilizes a selection algorithm to choose an appropriate video
layer. After fully downloading a segment, the media engines decode and playback this video
clip on the viewer’s device. Through monitoring the dynamic networking and buffer status,
the selection algorithm can adaptively choose proper streaming quality among the various
layers and instruct the HTTP access component to fetch the corresponding segments. More
details about the DASH standard and MPD files can be found in [6, 27].

Intermediate cache server is an indispensable part of the modern networked data-
intensive systems [19], including HTTP streaming. Through well-designed caching strate-
gies, it effectively accelerates the response time, reduces the long-haul bandwidth consump-
tion from the original servers, and improves data availability, even with limited cache space.
DASH naturally promotes that each streaming segment can be cached as a traditional web
object. Meanwhile, the intrinsic characteristic of media streaming has to be considered in
a meticulous manner. However, the proxy caching strategy in existing DASH system could
overlook the streaming features and encounter with the potential issues, e.g., the bit-rate
oscillation [14, 23].

To understand the characteristic of current DASH streaming system, we have closely
examined the recent Neubot DASH dataset [2] from the segment-level granularity. This
dataset is collected from more than a thousand Internet clients, using a DASH module built
on top of Neubot,2 an open source tool for the collection of network measurements. As
shown in Fig. 2, we observe that the switching requests account for more than 55 % of
the daily requests in January, 2014. This indicates that most of the DASH clients generally
suffer unstable bandwidth, and the QoE thus fluctuates over time, which is undesirable for
smooth and high-quality streaming [12]. Moreover, this type of request pattern also influ-
ences on the caching strategy in mobile streaming scenario [9]. As such, we consider the
switching request as the dependency among the neighboring segments in different quality,

1For simplicity, we only show the video layers and segments. The general streaming components consist
of video layers, audio tracks, subtitles of different languages, multiple DRM (Digital Rights Management)
information and common encryption.
2http://www.neubot.org/

http://www.neubot.org/

Multimed Tools Appl (2018) 77:1453–1474 1457

0 5 10 15 20 25 30
0

5

10

15

x 10
4

Days (20140101−20140131)

of

 r
eq

ue
st

s

Constant request
Switching request

Fig. 2 Switching requests vs. constant requests

which is not be operated by most existing caching strategies in such a distributed stream-
ing system. To enhance the user’s experience, as well as improve the performance of cache
management, we develop a novel dependency-aware caching strategy in next section.

3 Dependency-aware caching

In this section, we develop a dependency-aware cache model, which considers the depen-
dency among the segments through our utility function.

3.1 Utility function

Since we concern about the switching requests in the presence of requests from heteroge-
neous clients, we start from a simple streaming scenario in which the origin server directly
serves video streaming to clients. Table 1 gives important notation used in this paper. Each
client session is given by i. We assume that the number of sessions is M and each session
has Ni requests, so i ∈ {1, 2, . . . , M}. Let r(i)

j denote the preferred bandwidth requirement

Table 1 Summary of major notations

Notation Description

r
(i)
j preferred bandwidth requirement of segment that is downloaded

by the request j of session i

d
(i)
j average downloading bandwidth of request j of session i

w
(i)
j utility of request j of session i without any cache server

u(r
(i)
j) dependency of the request j of session i

f (θ
(i)
j) loss function

Skl storage size of the segment l of level k

Rkl set of requests of the segment l of level k

λ a factor that reflects the scale of dependency

α a factor that reflects the loss scale in loss function

μ a factor that reflects the size of available cache storage

1458 Multimed Tools Appl (2018) 77:1453–1474

of the segment that is pulled by request j of session i, j ∈ {1, 2, . . . , Ni}. Let d
(i)
j be the

average download bandwidth for request j of session i. With the assistance of local buffer,
video clients can fetch the high-quality segments, even if the average bandwidth is lower
than the requirement of higher bit-rate streaming. As such, r(i)

j > d
(i)
j means that the client

utilizes the local buffer to acquire more appropriate quality level, while r
(i)
j ≤ d

(i)
j means

that the client selects the proper quality level to adapt view speed for current video ses-
sion. For the former, if the clients cannot fetch successive same quality segments as soon
as possible, the user’s QoE will be influenced largely. As such, we define ω

(i)
j = d

(i)
j /r

(i)
j

and use it to represent the utility of a request between the server and a client. Considering
the dependency of continual requests, we define a parameter λ to determine that how many
neighboring requests should be exploited, λ ∈ N. In current scenario, the dependency of

request j of session i is denoted as u
(
r
(i)
j

)
, defined in the following equation.

u(r
(i)
j) =

{
1
j

∑j

k=1 ω
(i)
k if j ≤ λ

1
λ

∑j
k=j−λ ω

(i)
k otherwise

(1)

Considering the more general case, that is, an HTTP cache server schedules the cached
segments and relays uncached segments from the origin server to the heterogeneous clients.
Each streaming session starts from video users who request the MPD file of their favorite
media by a DASH player, such as VLC,3 and the player receives and interprets MPD file
to parse the details of pulling video segments from the HTTP cache servers. Under this
scenario, the cache server consumes extra time to fetch uncached contents from the origin
server. However, the extra fetching time will impact the user’s QoE and generate oscilla-

tions [23]. To reflect its influence on the utility value in (1), we use f
(
θ

(i)
j

)
=

(
θ

(i)
j

)α

denote the loss function, where θ
(i)
j = t

(i)
j /

(
t
(i)
j + t̂

(i)
j

)
, t

(i)
j means the downloading time

from the cache server to clients, t̂
(i)
j means the downloading time from the origin server

to the cache server, and α is a tunable parameter. f (θ) is a non-decreasing function,4

θ ∈ (0, 1], and f ∈ (0, 1]. For the certain request, the dependency of request j of session i

is defined in (2).

u(r
(i)
j) =

⎧
⎨
⎩

1
j

∑j

k=1 ω
(i)
k f

(
θ

(i)
k

)
if j ≤ λ

1
λ

∑j
k=j−λ ω

(i)
k f

(
θ

(i)
k

)
otherwise

(2)

There are three distinct features of the loss function f (θ). First, it represents the status
of the requested segments in a cache server. For instance, if the requested segment has
been cached, this request can obtain the whole utility (θ = 1, f (θ) = 1), otherwise, the
uncached segment has to be fetched from the origin server and relayed to clients, which
increases the transmission delay. Moreover, the utility will experience a certain decrement
(θ < 1, f (θ) < 1). Second, it implies a potential replacement strategy that maximizes
the total utility. For example, if t̂ � t , θ is very close to 1, which means that even if
the requested segment is not cached, the total utility only encounters a quite small scaled
decrease; thus, this segment can be evicted and replaced. Third, the parameter α reflects loss
scale when θ decrease or increase largely. Intuitively, α is related to the video length, this is

3A popular, free and open source cross-platform multimedia player and framework. http://www.videolan.
org/vlc/index.html
4In this paper, we omit the subscript and superscript when there is no confusion.

http://www.videolan.org/vlc/index.html
http://www.videolan.org/vlc/index.html

Multimed Tools Appl (2018) 77:1453–1474 1459

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ

L
os

s
fu

nc
tio

n
f(

θ)

Netflix−like video service (α = 0.4)
Vine−like video service (α = 2.5)

Fig. 3 Loss function f(θ)

because a small α means that the streaming service can endure a relative high relayed delay
with the assistance of client’s local buffer; while a large α means that a streaming service
has higher requirement on minimizing the delay, e.g., for short video service, Vine.5 We
display the loss functions of these two video types with different parameter α in Fig. 3.

3.2 Problem formulation

We now formulate the objective function in our dependency-aware caching. Let K and L be
the number of quality level and the number of segment sequence, respectively. We define the
segment sets of video streaming S contains K rows and L columns segments. Let Skl be the
storage size of the k-th level l-th segment (k, l) in video streaming and Rkl be the requests
set of segment (k, l), k ∈ {1, 2, . . . , K} and l ∈ {1, 2, . . . , L}. Then, consider [Ts, Te], the
streaming service available period and Δt , the update period of cache status, our aim is to
maximize the total utility of all sessions during one time slot [T − Δt, T) and select the
proper segments to cache at time T , ∀T ∈ [Ts + Δt, Te]. The objective function is defined
as follows.

max
∑

k∈[1,K]

∑
l∈[1,L]

∑

r
(i)
j ∈Rkl

u
(
r
(i)
j

)
(3)

subjecting to the following storage availability constraint:∑
k∈[1,K]

∑
l∈[1,L]

IklSkl ≤ μH (4)

Ikl =
{
1 if the l-th segment of the k-th level is cached
0 otherwise

(5)

H =
K∑

k=1

L∑
l=1

Skl (6)

where Ikl is an indicator function of whether a segment is cached in (5), H is the total data
size of a video, and μ is a tunable parameter that controls the ratio between the cached
segments and H .

5https://vine.co

https://vine.co

1460 Multimed Tools Appl (2018) 77:1453–1474

(2) Bandwidth Availability Constraint:

∑
i∈[1,M]

Bi ≤ σB (7)

where Bi is the bandwidth requirement of session si during current time slot, B is the total
bandwidth of a cache server and the parameter σ can be controlled to adjust the available
bandwidth usage in a time unit within the cache server must provide enough bandwidth
usage to meet the demands of all video sessions. Therefore, for any session si in time
slot [T , T + Δt], the bandwidth availability constraint guarantees that the total maximum
downloading bandwidth is lower than the ratio of the total bandwidth.

3.3 Equivalent problem

Given that the certain storage and bandwidth constraints will impact the value of utility
function, we first discuss the following four situations.

(1) b
(i)
j < r

(i)
j , f (θ) = 1: The requested segment is cached, and the downloading band-

width is lower than the requirement. Thus, the client’s local buffer fully supports the
streaming playback. The selection algorithm has two choices for the next step: the
first is to maintain current quality and wait until the better networking condition; the
second is to switch the streaming layer to download the lower quality segments.

(2) b
(i)
j < r

(i)
j , f (θ) < 1: The requested segment is uncached, and the downloading

bandwidth is lower than the requirement. Comparing with the first situation, f (θ) < 1
means that the request will generate a lower utility than the last situation, which is
reasonable. Meantime, the cache server tends to cache this segment and acquire a
higher utility if the storage size is enough.

(3) b
(i)
j ≥ r

(i)
j , f (θ) = 1: The requested segment is cached, and the downloading

bandwidth is higher than the requirement, which means that the client has enough
bandwidth to fetch this streaming segment, but it does not choose the higher quality
layer. There are two reasons: (1) the selection algorithm needs more time to make sure
that the higher bandwidth is consistent; (2) the client’s device does not need or support
higher quality streaming, e.g. due to resolution and hardware limitation.

(4) b
(i)
j ≥ r

(i)
j , f (θ) < 1: The requested segment is uncached, and the downloading

bandwidth is higher than the requirement. The alternation between the third and the
fourth situation likely produce oscillations phenomenon [14], Let b̂

(i)
j be the band-

width between the origin server and the cache server. We define r̂∗ as the requirement
of the maximum support quality level at the bandwidth max{r(i)

j ,min{b(i)
j , b̂

(i)
j }} . The

cache system control the client’s bandwidth at a center level after a long-term con-
sistent downloading, e.g. half of video length. For the cache server, it can get higher
utility by caching this segment.

Based on the above discussions, we take care of the storage availability constraint. The
bandwidth availability constraint will be explored as a load-balance condition in Section 4.
We assume that the total bandwidth of the single cache server is enough to support all video
sessions. Given that each segment has a total utility from a series of requests, each request
will generate two distinct utilities for different cache states. Let Û (r) and ΔU(r) denote the
utility baseline and increment, respectively. That is, each request has a utility baseline Û (r)

Multimed Tools Appl (2018) 77:1453–1474 1461

when the requested segment is uncached, and has a utility improvement ΔU(r) when the
requested segment is cached, as shown in (8).

U
(
r
(i)
j

)
= Û

(
r
(i)
j

)
+ IklΔU

(
r
(i)
j

)
(8)

For a certain request, û(r) can be calculated in advance. Our aim is to maximize the
following (9). As such, the segment cache selection problem can be naturally related to
the 0-1 knapsack problem: selecting a segment to cache corresponds to pick an item into a
knapsack, and vice verse.

max
∑

k∈[1,K]

∑
l∈[1,L]

Ikl

∑

r
(i)
j ∈Rkl

ΔU(r
(i)
j)

︸ ︷︷ ︸
Profit Pkl

(9)

We define that each item has weight w and a profit p. For each segment, the storage
requirement and utility increment can be denoted as (w,p) of each item, respectively. The
aim is now to find a subset Ŝ ∈ S of maximum profit

∑
(k,l)∈Ŝ

p(k,l), subject to one con-
straint in which the total weight of the set should not exceed μH :

∑
(k,l)∈Ŝ

w(k,l) ≤ μH .
This segment cache selection problem is equivalent to the 0-1 knapsack problem, defined in
the (10).

max
∑

(k,l)∈S

x(k,l)p(k,l) (10)

subject to: ∑
(k,l)∈S

x(k,l)w(k,l) ≤ μH

x(k,l) ∈ 0, 1, ∀(k, l) ∈ S (11)
Many works contribute to solve the 0-1 knapsack problem, such as dynamic program-

ming, which adopts a recursive function and can solve our problem with time complexity
O(KLμH). But this is still time-consuming solution in a practical system. As such, we
design an effective heuristic algorithm to address our caching problem. The corresponding
algorithm is shown in Algorithm 1.

Algorithm 1 Dependency-aware caching algorithm

Input:
The set of sessions in

1: Set 0;
2: for each session in do
3: Calculate of each request in session by the (8);
4: end for
5: for each segment in do
6: Calculate the Profit of segment by the (9);
7: end for
8: Sort by descendant order of
9: for each segment in do

10: if
11: cache segment
12:
13: end if
14: end for

1462 Multimed Tools Appl (2018) 77:1453–1474

4 Similarity-aware allocation

In HTTP adaptive streaming, clients retrieve the location of video segments from the
streaming manifest file (e.g. MPD files in DASH). Selection algorithm then examines the
responds time and chooses the proper cache server to start streaming playback. There are
two potential issues: (1) inaccurate segment selection due to the decrease of local net-
working bandwidth [14], and (2) unpredictable QoE fluctuation and playback delay during
the initial process of establishing the connection. These issues trigger the cache replace-
ment in cache server frequently. Consequently, cache servers consume extra bandwidth to
request uncached segments and confront with load-balance problem. Hence, it is necessary
to design an optimal allocation strategy for cache servers and clients. A good allocation
scheme should assign the proper cache server to a bunch of clients. In Section 3, our aim
is to optimize the caching strategy in the single cache server. In this section, we extend our
caching scheme to the multi-server caching scenario. The key problem is that the allocation
of cache servers should guarantee the load-balance and benefit the caching performance. As
such, we present a similarity-aware allocation strategy that not only promotes the caching
performance, but also balances the traffic load between cache servers.

4.1 Similarity calculation

The earlier proposals classified video sessions by the download link bandwidth in
RTP/RTCP/RTSP context, which was effective and reasonable due to the centralized
streaming control and lower bit-rate requirement. While this classification scheme cannot
sufficiently adapt current distributed clients, because of the decreasing bandwidth needs and
unstable networking condition in high-speed movement and wireless circumstances. Hence,
recent studies classify video sessions through the geographical information [11]. This
method accommodates the mobile devices, but lacks the recognition for private domains.
To overcome these issues, we propose a similarity-aware classification approach. Our aim
is to explore the similar video sessions and assign them to the same cache servers with the
load-balance constraint.

Thus, we first introduce that how to measure the similarity between two video sessions.
We keep the previous definitions about the streaming session in Section 3.1. In addition,
each session si has a K × L matrix Ai , in which the element Ai(k, l) is equal to 1 if the
l-th segment of the k-th quality level is requested. To measure the similarity, we introduce
a new index, weighted overlap coefficient, woc(si, sj) to denote the similarity between si
and sj in (12).

woc(si, sj) = W(B)

min{W(Ai),W(Aj)} (12)

where B is the 1 × L matrix in which the B(1, l) = 1 if the l-th column segments in two
sessions have the same quality, otherwise B(1, l) = 1. Thus, B(1, l) = ∑

k(Ai(k, l) ∧
Aj (k, l)), so k ∈ {1, 2, · · · , K}, l ∈ {1, 2, · · · , L}; the weight function W considers the
continual requests in session si , thus, W(Ai) = ∑

l wlIl(
∑

k Ai(k, l)), where indicator
function Il and the weight value wl are defined in (13) and (14), respectively.

Il

(∑
k

Ai(k, l)

)
=

{
1 if

∑
k Ai(k, l) 	= 0

0 otherwise
(13)

wl =
{

Il if l = 1 or wl−1 = 0
Il(wl−1 + 1) otherwise

(14)

Multimed Tools Appl (2018) 77:1453–1474 1463

There are three specific features in our similarity calculation for the video sessions. First,
0 ≤ woc(si, sj) ≤ 1. The more identical requests, the higher similarity. Second, it carefully
handles the fully fetching and partial fetching. As we know, 60 % of streaming viewers do
not watch the whole video content [8], which means that some video sessions only request
partial segments. For instance, if the set of all segments in the session s2 is a subset of the set
of all segments in the session s1, woc(s1, s2) = 1. Third, the weight function enhances the
effects of continual request matching. Considering four sessions {s1, s2, s3, s4} in Fig. 4, the
session s1 has three same requests with other three sessions. Thereinto, the same requests
in sessions s2 and s3 are continual. Different with Jaccard index (J) [31] and Overlap coef-
ficient (O) [32], our weighted overlap coefficient will get the different similarity among
(s1, s2), (s1, s3), and (s1, s4). This is closer to our streaming caching context.

4.2 Problem formulation

We now present the formulation of our similarity-aware allocation strategy. To improve
the cache utilization, the sessions that have the closer similarity should be placed into a
cache server. Let P denote the number of cache servers, the target is to assign all sessions
into these cache servers and maintain the load-balance among them. This problem can be
transformed into a clustering problem in which the similar sessions must be grouped into a
cache server. At the meantime, the difference of the similarity in a session set is minimized.
Let dw(si, sj) = 1 − woc(si, sj) denote the difference between two sessions. The problem
can be formulated in (15).

min
P∑

p=1

∑
si ,sj ∈Sp

si 	=sj

dw(si, sj) (15)

subject to the following constraints:
(1) Bandwidth Availability Constraint:

Bp ≤ σB (16)

where Bp is the bandwidth usage of session set Sp . Similar to the (7), Bp = ∑
si∈Sp

Bi .
(2) Load-balance Constraint:

Bp − Bq < βP,∀p, q ∈ {1, 2, · · · , P }, p 	= q (17)

where β is the load-balance threshold, βP is the bandwidth difference between two cache
servers. This constraint achieves the load-balance among the cache servers.

Our problem can be solved by the k − medoids algorithm. Instead of calculating the
mean value of the objects in a cluster as a reference point in the general cluster algorithm
k − means, k − medoids algorithm randomly chooses the representative objects as the
cluster centers and diminishes the sensitivity for outliers largely [10]. Thus, k − medoids

algorithm shows higher robustness and reliability. To accommodate k−medoids algorithm,

Fig. 4 The example of weighted
overlap coefficient

1464 Multimed Tools Appl (2018) 77:1453–1474

some sessions are first selected as the cluster centers cp randomly, and the new formulation
is shown in (18). To fit our problem, we modify the k − medoids algorithm in [4] and
propose Similarity-aware Allocation Algorithm in Algorithm 2.

min
P∑

p=1

∑
si∈Sp

dw(si, cp) (18)

Algorithm 2 Similarity-aware allocation algorithm

Input:
The set of sessions in ,
The new session

output:
The session set of each cluster or the cache server location.

1: Arbitrarily choose sessions in as the initial representative session
2: Calculate the distances between each unrepresentative session and centers;
3: Assign every session to its closest under the bandwidth availability and load-

balance constraints;
4: repeat
5: Randomly select a nonrepresentative session,
6: Compute the total cost, , of

swapping representative session, , with ;
7: if 0 and then
8: Swap with
9: end if

10: until no change;
11: if there is a new session then
12: Find the most similar representative session with new session under the

bandwidth availability and load-balance constraints;
13: return the cache server location of ;
14: else
15: return the session set of each cluster;
16: end if

5 Performance evaluation

In this section, we validate our analysis and examine the performance of the proposed
algorithms for cache management.

5.1 Simulation setup

Based on the same dataset as we measured in Section 2, we simulate the request activities
of user’s video session. We randomly select 10 samples from the dataset in January 2014
and each sample consists of 30,000 requests. All simulation results are the mean value of
these samples.

Current dataset is based on the basic streaming scenario, namely, several streaming
servers and distributed clients. To accommodate our context, we assume that these streaming

Multimed Tools Appl (2018) 77:1453–1474 1465

0 5 10 15
0.7

0.8

0.9

1

1.1

1.2

Parameter λ

N
or

m
al

iz
ed

 U
til

ity
 S

ta
nd

ar
d

D
ev

ia
tio

n

μ=0.1
μ=0.2
μ=0.3

(a)

0 5 10 15

1

1.2

1.4

1.6

1.8

2

2.2

Parameter λ

N
or

m
al

iz
ed

 U
til

ity
 S

ta
nd

ar
d

D
ev

ia
tio

n

μ=0.1
μ=0.2
μ=0.3

(b)

Fig. 5 The impact of λ

servers are cache servers that communicate with one origin server in the cloud-based envi-
ronment. The throughput for origin server is shared by each cache server. Followed by the
study in [29], we assume that the origin server is a small instance in Amazon EC26 and
the throughput is set to 500Mbps. We adopt the configuration of other parameters as fol-
lows: (1) Because the segment duration in the dataset is 2sec, we set the service available
basis and update period Δt to 2sec. (2) Another tunable parameter α is related to the video
length. The simulation dataset only contains one video, thus the α can be selected freely.
Due to the short duration (30sec) of video, we set α = 2. To evaluate the dependency-aware
caching, we keep above settings and assume the single cache server scenario. The caching
system collects session information and updates cache state of each segment by Algorithm 1
periodically.

In our caching strategy, parameter λ is critical for our model design. To select the proper
λ, we first simulate the basic dependency-aware caching system to investigate the impact of
λ. Let D be the total data transferring from the origin server to the cache server. The perfect
concept is to utilize lower traffic cost and receive better hit-ratio. As such, we consider
the hit-ratio per unit D as the criterion. Figure 5a shows how the criterion performs with
different λ values at the certain cache size. For ease of comparison, the input data are first
normalized by the corresponding minimum values. Note that, the number of video segments
in simulation dataset restricts the range of λ is {1, 2, · · · , 15}. The results show that λ can
promote the best expectation when we set it to 3. Unless otherwise specified, λ = 3 is used
in our following simulations. We also investigate why a higher λ does not mean the better
caching performance. Figure 5b plots the normalized standard deviation of utility for each
request in the video sessions. The higher λ means that the caching system considers more
continual requests, which reduces the difference of utilities among the requests in a session.
However, from the results in Fig. 5a, we can observe the proper choice for λ.

5.2 Efficiency in dependency-aware cache model

In our experiments, we investigate the caching performance in single cache server sce-
nario. We compare our dependency-aware caching strategy (DEP) with the following three

6http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

1466 Multimed Tools Appl (2018) 77:1453–1474

cache algorithms that are widely used in practical web cache servers or streaming cache
systems. (1) Least Recently Used (LRU), where the algorithm records the recent requested
time of a segment, and discards the least recently requested segment first to release the
cache space. (2) Least Frequently Used (LFU) where the system keeps track of the number
of times a segment is requested in the cache server. If the cache space hardly stores the new
segment, the system will purge the segment with the lowest request frequency. (3) Segment-
based replacement (SEG) [26], where the replacement of cached segments follows the
popularity-based and priority-based rules. When the cache space is full, the victim quality
level first is recognized by the lowest popularity, and then the segments in this level will be
flushed from back to front.

Figure 6a shows that the cache hit-ratio at different cache sizes. Comparing with other
three approaches, when available cache space is lower than 50 % of the total streaming
size, our DEP approach can guarantee 20 % improvement. The utilization of storage also
can be increased substantially. Similar results are observed for the switching request hit-
ratio as shown in Fig. 6b. We have mentioned that the switching request impacts on the
stability of QoE, implying that the higher switching request hit-ratio can effectively achieve
the smoothed quality alteration in client’s end.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Cache Size (% of H)

H
it−

ra
tio

DEP
SEG
LFU
LRU

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Cache Size(% of H)

Sw
itc

hi
ng

 R
eq

ue
st

 H
it−

ra
tio

DEP
SEG
LFU
LRU

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

Cache Size(% of H)

R
ep

la
ce

m
en

t−
ra

tio

DEP
SEG
LFU
LRU

0 20 40 60 80 100
0

0.5

1

1.5

2

Cache Size(% of H)

N
or

m
al

iz
ed

 D

DEP
SEG
LFU
LRU

(a)

(c) (d)

(b)

Fig. 6 Four criteria among LFU, LRU, Segment-based and Dependency-aware approaches

Multimed Tools Appl (2018) 77:1453–1474 1467

Figure 6c illustrates that the replacement-ratio versus cache size. Because SEG and DEP
consider the specific characteristics and update cache state periodically, the number of cache
replacement maintains a consistent level. In the meantime, all of them are far below LRU
and LFU. Note that DEP persists the lowest replacement ratio.

Let D be the amount of data transferring from the origin HTTP adaptive streaming server
to the cache server. Figure 6d performs the extra traffic consumption in the cache server.
D is decreased by the growth of available cache size. But in this figure, to illustrate the
distinction clearly, all values are normalized by the D of DEP strategy. Interestingly, SEG
always utilizes the smallest D, which is determined by the pre-defined segment-based prior-
ity. From the results in this figure, we can observe that, to achieve the optimal cache storage
strategy, our DEP strategy utilizes more traffic to download the uncached segments from the
origin server and relay to the clients. This is because the cache server discards several rare
and bulky segments. From Fig. 6c, we can know that DEP does not increase the number of
connection between the origin server and the cache servers.

5.3 Efficiency of similarity-aware allocation model

We now consider the multi-server caching context and evaluate the efficiency of similarity-
aware allocation strategy (SIM) in multi-servers HTTP cache system. For the sake of
comparison, we also simulate the random allocation (RAN) in which the system randomly
assign a cache server to the clients under the bandwidth and load-balance constraints. All
cache servers apply DEP as the default caching strategy. We keep the same criteria in
Section 5.2. The results are shown in Fig. 7. The Fig. 7a and b show the effectiveness in the
cache hit-ratio and switching request hit-ratio. The maximum improvements in these two
aspects are 4 % and 7 %, respectively, which largely increase the available storage size in
the multi-server cache context. Figure 7c represents the different replacement-ratio. Com-
paring with DEP+RAN, our DEP+SIM witnesses a significant decrease when cache servers
suffer lower available storage size. Figure 7d illustrates the effective of DEP+SIM in the
practical caching context. Comparing Figs. 6d and 7d, DEP+SIM decrease the data transfer-
ring consumption, which indicates that our joint approach gains better performance in the
multi-server caching system.

5.4 Performance of viewers’ QoE

To measure the performance of viewers’ QoE, we also conduct the practical deployment in
the HTTP adaptive streaming scenario. We choose two metrics to identify viewers’ QoE:
startup latency and playback discontinuity. Startup latency reflects that how long the view-
ers have to wait after selecting a video until its initial playback, Playback discontinuity is the
duration of discontinued playback, which is mainly caused by that the streaming segments
fail to arrive at a user before its playback deadline. As such, the lower playback discontinu-
ity represents that the users experience the better playback smoothness. The video stream is
selected from a public DASH streaming dataset,7 which is located at Klagenfurt. We imple-
ment four cache services with different caching algorithms using Python and deploy them

7Without loss of generality, we choose the first ten segments from 20-quality versions in the dataset of Big
Buck Bunny: http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny/4sec/

http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny/4sec/

1468 Multimed Tools Appl (2018) 77:1453–1474

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Size (% of H)

H
it−

ra
tio

DEP+SIM
DEP+RAN

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Cache Size(% of H)

Sw
itc

hi
ng

 R
eq

ue
st

 H
it−

ra
tio

DEP+SIM
DEP+RAN

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Cache Size(% of H)

R
ep

la
ce

m
en

t−
ra

tio

DEP+SIM
DEP+RAN

0 20 40 60 80 100
0.5

1

1.5

Cache Size(% of H)

N
or

m
al

iz
ed

 D

DEP+SIM
DEP+RAN

(a)

(c) (d)

(b)

Fig. 7 Four criteria between similarity-aware and random approaches

on the m4.large instances8 at Amazon EC2 Oregon area. These instances can receive the
clients’ requests from and pull/cache/forward corresponding streaming segments from the
original server to clients. To investigate the dynamics of two metrics conveniently, we also
implement a local client program that employs the basic DASH adaptive algorithm to pull
the streaming segments in real networking condition. The client’s device is DELL 7010 with
Intel Core i7-3770 3.4GHz CPU, 16GB memory, and campus networks.

For closely examining startup latency and playback discontinuity, we employ ten clients
to request streaming segments from the cloud-based server under different caching strate-
gies and repeat this experiment five times for each caching algorithm. We therefore get the
comparisons of viewers’ QoE in Fig. 8. According to the adaptive algorithm in the client
which prefers to select the initial segment with the lowest quality, LFU and LRU keep the
highest priority for the initial segment with the lowest quality, but SEG could flush all seg-
ments in lowest quality. We therefore observe that the startup latency has a slight increase in
DEP strategy compared with LFU and LRU in Fig. 8a, while SEG suffers the longest delay

8The instances are launched on Intel Xeon E5-2676 v3 2.4GHz Processor. Configuration: 2 vCPU; 8GB
memory; 8G storage size; Enhanced Networking setting.

Multimed Tools Appl (2018) 77:1453–1474 1469

DEP SEG LFU LRU

Caching strategy

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 s
ta

rt
up

 la
te

nc
y

DEP SEG LFU LRU

Caching strategy

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 p
la

yb
ac

k
di

sc
on

tin
ui

ty

(a) (b)

Fig. 8 Performance of viewers’ QoE

at the initial step. Figure 8b shows that performance of playback discontinuity. We find that
DEP has the lowest playback discontinuity due to the highest hit-ratio. That is, our method
can provide a better playback smoothness during streaming playback.

6 Related work

Both caching and HTTP streaming have been extensively studied in the literature [30]. We
now briefly list the existing works that are closely related to our study in this paper.

Comparing with the conventional web objects, media streaming objects demands signifi-
cantly more storage size and higher bandwidth requirement. It is known that traditional web
caching algorithms, such as Least Recently Used (LRU) and Least Frequently Used (LFU),
do not work well for media streaming applications, especially in the era of explosive user-
generated content (UGC). There have been extensive studies on media streaming caching,
focusing on the cache replacement and management in proxy-assisted cache servers; exam-
ples include sliding-interval caching, segment caching, and video staging [16], which were
effective and reasonable due to the centralized streaming control and lower bit-rate require-
ment. But the lack of a good adaptation for heterogamous devices impacts that they cannot
sufficiently support high-definition videos and likely suffer the unstable networking condi-
tion in high-speed movement and wireless circumstances. Different from aforementioned
studies, our work considers a promising HTTP adaptive streaming scenario, in which pre-
vious works may fail or suffer poor caching performance due to the networking fluctuation.
Our work is also motivated by the mobile streaming and caching analysis in [9]. We, how-
ever, consider the fundamental feature among continual requests, as well as utilize the
dependency of segment-level granularity to optimize the cache utilization and reduce the
extra traffic overhead in HTTP adaptive streaming scenario. Besides, due to the nature of
HTTP adaptive streaming, cache in CDNs is a general approach to handle the requests from
massive viewers [7]. As such, our proposed method, as a caching module in the streaming
delivery, also can be considered as the improvement of the caching part in existing CDNs.

In HTTP adaptive streaming, the selection of segments at the clients’ end is another
key issue in the literature. There have been a series of works seeking to offer better QoE

1470 Multimed Tools Appl (2018) 77:1453–1474

for video receivers in the presence of dynamic network conditions and limited cache sizes.
Liu et al. [22] demonstrated that switching back-and-forth between different video bit-rates
leads to inferior QoS and proposed a better bandwidth prediction and stabilization algorithm
to address this problem. STRA (Smoothed Throughput based Rate Adaptation) [17] seeks
to a receiver-driven rate adaptation method, which is further extended in Zhou et al. [35]
through a buffer-aware bit-rate switching framework based on control theory. Our work
complements them by considering the impacts at the cache server side, which calls for a
novel solution to the smoothed QoE for end-users.

7 Conclusion and further work

In this paper, we incrementally addressed the cache problem of HTTP adaptive streaming.
Through the trace analysis of a long-term large-scale DASH dataset, we found that the
switching requests constitute a significant portion in a per-day view. As a consequence, the
cache servers have to request the uncached segment from origin server frequently, which
not only decreases the performance of cache servers, but also interrupts the smoothed QoE
of viewers. To solve this problem, we proposed a novel utility function to consider the
dependency of continual requests, and explored the efficient dependency- and similarity-
aware caching scheme in the cache server. Simulation results illustrated that the proposed
DEP not only achieves impressive caching performance improvement, but also smooth the
switching requests for heterogeneous devices.

We are currently implementing the private cloud-based streaming cache and delivery
system to further evaluate proposed caching scheme in the practical environment. There
are many unaddressed research issues worth further exploration. For example, what is the
relationship between caching performance and power consumption? We are also interested
in designing an energy-aware caching system with the DEP-assisted caching strategy and
exploring the tradeoff between performance improvement and energy consumption in HTTP
adaptive streaming context.

References

1. Adhikari V, Guo Y, Hao F, Varvello M, Hilt V, Steiner M, Zhang Z-L (2012) Unreeling Netflix: Under-
standing and improving multi-cdn movie delivery. In: Proceedings of the IEEE INFOCOM’12, Orlando,
FL, USA

2. Basso S, Servetti A, Masala E, De Martin JC (2014) Measuring DASH streaming performance from the
end users perspective using neubot. In: Proceedings of the ACM MMSys’14, New York, NY, USA

3. CBC Sports (2014) CBC FIFAWorld Cup watched by Canadians in record numbers. http://www.cbc.ca/
1.2706905

4. Cheng X, Liu J (2011) Load-balanced migration of social media to content clouds. In: Proceedings of
the ACM NOSSDAV’11, New York, NY, USA

5. Cheuk WK, Lun Daniel PK (2007) Throughput optimization for video streaming proxy servers based on
video staging. Springer Multimedia Tools and Applications 35(3):311-333

6. DASH Industry Forum. Resource library, http://dashif.org/white-papers/
7. Dreier T (2016) Rio 2016: Online Olympic Viewing Is Skyrocketing, Reports Akamai. http://

www.sportsvideo.org/2016/08/15/rio-2016-online-olympic-viewing-is-skyrocketing-reports-akamai,
Auguest 2016

http://www.cbc.ca/1.2706905
http://www.cbc.ca/1.2706905
http://dashif.org/white-papers/
http://www.sportsvideo.org/2016/08/15/rio-2016-online-olympic-viewing-is-skyrocketing-reports-akamai
http://www.sportsvideo.org/2016/08/15/rio-2016-online-olympic-viewing-is-skyrocketing-reports-akamai

Multimed Tools Appl (2018) 77:1453–1474 1471

8. Erman J, Gerber A, Ramadrishnan KK, Sen S, Spatscheck O (2011) Over the top video: The gorilla in
cellular networks. In: Proceedings of the ACM IMC’11, New York, NY, USA

9. Gouta A, Hong D, Kermarrec A-M, Lelouedec Y (2013) HTTP adaptive streaming in mobile networks:
Characteristics and caching opportunities. In: Proceedings of the IEEE MASCOTS’13, San Francisco,
CA, USA

10. Han J, Kamber M, Pei J (2011) Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA

11. Hao J, Zimmermann R, Ma H (2014) GTube: Geo-predictive video streaming over HTTP in mobile
environments. In: Proceedings of the ACM MMSys’14, New York, NY, USA

12. Huang T-Y, Johari R, McKeown N, Trunnell M, Watson M (2014) A buffer-based approach to rate
adaptation: Evidence from a large video streaming service. ACM SIGCOMM Comput Commun Rev
44(4):187-198

13. Kim HJ, Choi SG (2014) QoE assessment model for multimedia streaming services using QoS
parameters. Springer Multimedia Tools and Applications 72(3):2163-2175

14. Lee DH, Dovrolis C, Begen AC (2014) Caching in HTTP adaptive streaming: Friend or foe? In:
Proceedings of the ACM NOSSDAV’14, New York, NY, USA

15. Li B, Wang Z, Liu J, Zhu W (2013) Two Decades of Internet Video Streaming: A Retrospective View.
ACM Trans Multimedia Comput Commun Appl 9(1s):33:1-20

16. Liu J, Xu J (2004) Proxy caching for media streaming over the internet. IEEE CommunMag 42(8):88–94
17. Liu C, Bouazizi I, Gabbouj M (2012) Rate adaptation for adaptive HTTP streaming. In: Proceedings of

the ACM MMSys’12, New York, NY, USA
18. Liu P-C, Leu J-S, Lee T-C, Chen T-H, Yee Y-S, Shih W-K (2012) WuKong: a practical video stream-

ing service based on native BitTorrent and scalable video coding. Springer Multimedia Tools and
Applications 60(1):47-68

19. Lu Y, Abdelzaher TF, Saxena A (2004) Design, Implementation, and Evaluation of Differentiated
Caching Services. IEEE Transaction on Parallel Distributed Systems 15(5):440-452

20. Malamos AG, Varvarigou TA, Malamas EN (1999) Quality of service admission control for multimedia
end-systems. In: Proceedings of the IMACS/IEEE CSCC’99, Athens, Greece

21. Malamos AG, Malamas EN, Varvarigou TA, Ahuja SR (2002) A model for availability of quality of
service in distributed multimedia systems. Springer Multimedia Tools and Applications 16(3):207-230

22. Mok RKP, Luo X, Chan EWW, Chang RKC (2012) QDASH: a QoE-aware DASH system. In:
Proceedings of the ACM MMSys’12, New York, NY, USA

23. Mueller C, Lederer S, Timmerer C (2012) A proxy effect analyis and fair adatpation algorithm for mul-
tiple competing Dynamic Adaptive Streaming over HTTP clients. In: Proceedings of the IEEE VCIP’12,
San Diego, CA, USA

24. Nafaa A, Gourdin B, Murphy L (2012) Adependablemultisource streaming system for peer-to-peer -based
video on demand services provisioning. Springer Multimedia Tools and Applications 59(1):169-220

25. Netflix. Overview. http://ir.netflix.com/
26. Rejaie R, Yu H, Handley M, Estrin D (2000) Multimedia proxy caching mechanism for quality adaptive

streaming applications in the Internet. In: Proceedings of the IEEE INFOCOM’10, Tel Aviv, Israel
27. Sodagar I (2011) The MPEG-DASH standard for multimedia streaming over the Internet. IEEE

MultiMedia 18(4):62-67
28. Timmerer C (2013) Dynamic Adaptive Streaming over HTTP (DASH): Past, present, and future. http://

www.streamingmediaglobal.com/Articles/ReadArticle.aspx?ArticleID=93275, November 2013
29. Wang G, Ng T (2010) The impact of virtualization on network performance of Amazon EC2 data center.

In: Proceedings of the IEEE INFOCOM’10, San Diego, CA, USA
30. Wang Z, Sun L, Wu C, Zhu W, Yang S (2014) Joint online transcoding and geo-distributed delivery for

dynamic adaptive streaming. In: Proceedings of the IEEE INFOCOM’14, Toronto, ON, Canada
31. Wikipedia. Jaccard index. http://en.wikipedia.org/wiki/Jaccard index
32. Wikipedia. Overlap coefficient. http://en.wikipedia.org/wiki/Overlap coefficient
33. YouTube Official Blog (2016) Second presidential debate-related videos rack up 40 percent more views

than the first. https://youtube.googleblog.com/2016/10/second-presidential-debate-related.html
34. Yu F, Zhang Q, Zhu W, Zhang Y-Q (2003) QoS-adaptive proxy caching for multimedia streaming over

the Internet. IEEE Transactions on Circuits and Systems for Video Technology 13(3):257-269
35. Zhou C, Zhang X, Huo L, Guo Z (2012) A control-theoretic approach to rate adaptation for dynamic

HTTP streaming. In: Proceedings IEEE VCIP’12, San Diego, CA, Canada

http://ir.netflix.com/
http://www.streamingmediaglobal.com/Articles/ReadArticle.aspx?ArticleID=93275
http://www.streamingmediaglobal.com/Articles/ReadArticle.aspx?ArticleID=93275
http://en.wikipedia.org/wiki/Jaccard_index
http://en.wikipedia.org/wiki/Overlap_coefficient
https://youtube.googleblog.com/2016/10/second-presidential-debate-related.html

1472 Multimed Tools Appl (2018) 77:1453–1474

Cong Zhang received the M.S. degree in information engineering from Zhengzhou University, Zhengzhou,
China, in 2012, and is currently working toward the Ph.D. degree in computing science at Simon Fraser
University, British Columbia, Canada. He is currently working with the Network Modeling Research Group,
Simon Fraser University, Burnaby, BC, Canada. His research interests include multimedia communications,
cloud computing, and crowdsourced live streaming.

Jiangchuan Liu received the B.Eng. degree (cum laude) from Tsinghua University, Beijing, China, in 1999,
and the Ph.D. degree from The Hong Kong University of Science and Technology in 2003, both in com-
puter science. He is a University Professor in the School of Computing Science, Simon Fraser University,
British Columbia, Canada, and an NSERC E.W.R. Steacie Memorial Fellow. He is an EMC- Endowed Vis-
iting Chair Professor of Tsinghua University, Beijing, China (2013-2016). From 2003 to 2004, he was an
Assistant Professor at The Chinese University of Hong Kong. His research interests include multimedia sys-
tems and networks, cloud computing, social networking, online gaming, big data computing, wireless sensor
networks, and peer-to-peer networks. He is a co-recipient of the inaugural Test of Time Paper Award of IEEE
INFOCOM (2015), ACM SIGMM TOMCCAP Nicolas D. Georganas Best Paper Award (2013), ACMMul-
timedia Best Paper Award (2012), IEEE Globecom Best Paper Award (2011), and IEEE Communications
Society Best Paper Award on Multimedia Communications (2009). His students received the Best Student
Paper Award of IEEE/ACM IWQoS twice (2008 and 2012). He has served on the editorial boards of IEEE
Transactions on Big Data, IEEE Transactions on Multimedia, IEEE Communications Surveys and Tutorials,
IEEEAccess, IEEE Internet of Things Journal, Computer Communications, andWileyWireless Communica-
tions and Mobile Computing. He is Steering Committee Chair of IEEE/ACM IWQoS (2015-2017) and TPC
co-chair of IEEE IC2E’2017 and IEEE/ACM IWQoS’2014. He serves as Area Chair of IEEE INFOCOM,
ACM Multimedia, IEEE ICME, and etc.

Multimed Tools Appl (2018) 77:1453–1474 1473

Fei Chen received the M.S. degree from the School of Electronics Engineering and Computer Science,
Northeastern University, Shenyang, China, in 2009, and the Ph.D degree from the School of Computing
Science, Simon Fraser University, Burnaby, BC, Canada, in 2014. He is currently an Assistant Professor
with the School of Digital Media, Jiangnan University, Wuxi, China. His research interests include cloud
computing, peer-to-peer networks, crowdsensing systems, and multimedia communications.

Yong Cui received the BE degree and the Ph.D. degree both on Computer Science and Engineering from
Tsinghua University, China, respectively in 1999 and 2004. He is currently a full professor at the Computer
Science Department in Tsinghua University. He published over 100 papers in the refereed conferences and
journals with several Best Paper Awards. He coauthored 7 Internet standard documents (RFC) for his proposal
on IPv6 technologies. His major research interests include mobile cloud computing and network architecture.
He served or serves at the editorial boards on IEEE TPDS, IEEE TCC and IEEE Internet Computing. He is
currently a co-chair of IETF IPv4/IPv6 Transition WG Softwire.

1474 Multimed Tools Appl (2018) 77:1453–1474

Edith C.-H. Ngai is currently an Associate Professor in Department of Information Technology, Upp-
sala University, Sweden. She received her PhD from The Chinese University of Hong Kong in 2007. She
was a post-doc in Imperial College London, United Kingdom in 2007-2008. Her research interests include
Internet-of-Things, mobile crowdsourcing, network security and privacy, smart cities and healthcare. She is a
visiting researcher at Ericsson Research in 2015-2016. Edith is a VINNMER Fellow (2009) awarded by VIN-
NOVA, Sweden. Her co-authored papers have received best paper runner-up awards in IEEE IWQoS 2010
and ACM/IEEE IPSN 2013. Edith has served as TPC members in leading networking conferences, including
IEEE Infocom, IEEE ICDCS, IEEE ICC, IEEE Globecom, IEEE/ACM IWQoS, etc. She was a TPC cochair
of Swedish National Computer Networking Workshop (SNCNW’12), QShine’14, SmartCity’15, ISSNIP’15,
and iThings’16. She is a project leader of the Vinnova GreenIoT project (2014-2017) in Sweden. She has
served as a guest editor in special issue of IEEE Internet-of-Things Journal, IEEE Transactions of Industrial
Informatics, and Springer Mobile Networks and Applications (MONET). Edith is a senior member of IEEE
and a member of ACM.

Yuemin Hu is a professor of land information technology at South China Agricultural University. He’s also
the director of the Guangdong Province Key Laboratory of Land use and consolidation, and the chairman of
the Guangdong Mapping and Geoinformation Industry Technology Innovation Alliance. Yueming has a PhD
in soil geography from Zhejiang University.

	Dependency- and similarity-aware caching for HTTP adaptive streaming
	Abstract
	Introduction
	Background and motivation
	Dependency-aware caching
	Utility function
	Problem formulation
	Equivalent problem

	Similarity-aware allocation
	Similarity calculation
	Problem formulation

	Performance evaluation
	Simulation setup
	Efficiency in dependency-aware cache model
	Efficiency of similarity-aware allocation model
	Performance of viewers' QoE

	Related work
	Conclusion and further work
	References

